The goal of pipster is to make use of wbpip functions easily.
Installation
You can install the development version of pipster from GitHub with:
# install.packages("devtools")
devtools::install_github("PIP-Technical-Team/pipster")
Identify type of data
Group Data
# W: Weights, share of population, sum up to 100
# X: welfare vector with mean welfare by decile
# P:Cumulative share of population
# L: Cumulative share of welfare
# R: share of welfare, sum up to 1.
W = c(0.92, 2.47, 5.11, 7.9, 9.69, 15.24, 13.64, 16.99, 10, 9.78, 3.96, 1.81, 2.49)
X = c(24.84, 35.8, 45.36, 55.1, 64.92, 77.08, 91.75, 110.64, 134.9, 167.76, 215.48, 261.66, 384.97)
P = c(0.0092, 0.0339, 0.085, 0.164, 0.2609, 0.4133, 0.5497, 0.7196, 0.8196, 0.9174, 0.957, 0.9751, 1)
L = c(0.00208, 0.01013, 0.03122, 0.07083, 0.12808, 0.23498, 0.34887, 0.51994, 0.6427, 0.79201, 0.86966, 0.91277, 1)
R = (W * X) / sum(W * X)
# type 1 ------
## up to 1 ---------
identify_pip_type(welfare = L,
weight = P)
#> [1] "gd_1"
## up to 100 ---------
identify_pip_type(welfare = L*100,
weight = P)
#> [1] "gd_1"
# type 2 -----------
## up to 1 -----------
identify_pip_type(welfare = R,
weight = W/100)
#> ! vectors not sorted
#> [1] "gd_2"
## up to 100 ---------
identify_pip_type(welfare = R*100,
weight = W)
#> ! vectors not sorted
#> [1] "gd_2"
# type 5 -----------
identify_pip_type(welfare = X,
weight = W/100)
#> [1] "gd_5"
# type 3 -----------
identify_pip_type(welfare = X,
weight = P)
#> [1] "gd_3"
Microdata
# l: length
# Y: welfare
# Q: population or weights
# I: imputation ID
l <- 300
Y <- sample(1000, l,replace = TRUE)
Q <- sample(35, l,replace = TRUE)
I <- sample(1:5, l,replace = TRUE)
identify_pip_type(welfare = Y,
weight = Q)
#> ! vectors not sorted
#> [1] "md"
identify_pip_type(welfare = Y,
weight = Q,
imputation_id = I)
#> ! vectors not sorted
#> [1] "id"
I2 <- rep(1, l)
identify_pip_type(welfare = Y,
weight = Q,
imputation_id = I2)
#> ! vectors not sorted
#> [1] "md"
Convert to PIP format
Group Data
Convert Group Data Type-2 to Group Data Type-1 . Notice that the whole dataframe is parsed to the function because we need the whole dataframe back. It is not enough with parsing just the welfare and weight vetors.
pip_gd |>
fselect(R,W)
#> R W
#> 1 0.002079692 0.92
#> 2 0.008047104 2.47
#> 3 0.021093739 5.11
#> 4 0.039613054 7.90
#> 5 0.057248211 9.69
#> 6 0.106902117 15.24
#> 7 0.113888553 13.64
#> 8 0.171066582 16.99
#> 9 0.122764156 10.00
#> 10 0.149309315 9.78
#> 11 0.077653634 3.96
#> 12 0.043099829 1.81
#> 13 0.087234016 2.49
gd <- as_pip(dt = pip_gd,
welfare_var = "R",
weight_var = "W",
pip_type = "gd_2")
#> i columns "welfare" and "W" have been rescaled to range (0,1]
gd |>
fselect(R,W)
#> R W
#> 1: 0.002079692 0.0092
#> 2: 0.010126796 0.0339
#> 3: 0.031220536 0.0850
#> 4: 0.070833589 0.1640
#> 5: 0.128081800 0.2609
#> 6: 0.234983917 0.4133
#> 7: 0.348872469 0.5497
#> 8: 0.519939051 0.7196
#> 9: 0.642703207 0.8196
#> 10: 0.792012522 0.9174
#> 11: 0.869666156 0.9570
#> 12: 0.912765984 0.9751
#> 13: 1.000000000 1.0000
class(gd)
#> [1] "pipgd" "data.table" "data.frame"