Returns the first derivative of the quadratic Lorenz
Source:R/gd_compute_pip_stats_lq.R
derive_lq.Rd
derive_lq()
returns the first derivative of the quadratic Lorenz curves
with c = 1. General quadratic form: ax^2 + bxy + cy^2 + dx + ey + f = 0. This
function implements computes the derivative of equation (6b) in the original
Lorenz Quadratic paper: $$-(B / 2) - (\beta + 2 \alpha x) / (4
\sqrt(\alpha x^2 + \beta x + e^2)$$
Arguments
- x
numeric: Point on curve. Allow for vectors.
- A
numeric: Lorenz curve coefficient. Output of
regres_lq()$coef[1]
.- B
numeric: Lorenz curve coefficient. Output of
regres_lq()$coef[2]
.- C
numeric: Lorenz curve coefficient. Output of
regres_lq()$coef[3]
.- key_values
named list: key values for lq fit, calculated using A, B, C parameters using gd_lq_key_values
References
Villasenor, J., B. C. Arnold. 1989. "Elliptical Lorenz curves". Journal of Econometrics 40 (2): 327-338.