Skip to contents

Clean grouped data to be used in PIP methods.

Usage

gd_clean_data(dt, welfare, population, gd_type, quiet = FALSE)

Arguments

dt

data.frame: A table with survey data.

welfare

character: Name of welfare column.

population

character: Name of population column.

gd_type

numeric: Type of data. See details.

quiet

logical: If TRUE output messages are suppressed.

Value

data.table

Details

If gd_type = 1 population must be the cumulative proportion of population and welfare must be the cumulative proportion of income held by that proportion of the population (Lorenz curve). If gd_type = 2, population must be the proportion of population and welfare must be the proportion of income. If gd_type = 5, then population must be the Percentage of the population in a given interval of incomes, whereas welfare must be the mean income of that interval.

Examples

# Load example data
data("gd_GHI_2009_income")

# Standardize dataset
wbpip:::gd_clean_data(
  gd_GHI_2009_income, welfare = "welfare",
  population = "weight", gd_type = 5)
#>  columns "welfare" and "weight" have been rescaled to range (0,1]
#>     country_code survey_year weight    welfare   area
#>           <char>       <num>  <num>      <num> <char>
#>  1:          JKL        2009    0.1 0.02292242       
#>  2:          JKL        2009    0.2 0.05774930       
#>  3:          JKL        2009    0.3 0.10232770       
#>  4:          JKL        2009    0.4 0.15716421       
#>  5:          JKL        2009    0.5 0.22252476       
#>  6:          JKL        2009    0.6 0.29363491       
#>  7:          JKL        2009    0.7 0.38883260       
#>  8:          JKL        2009    0.8 0.50710468       
#>  9:          JKL        2009    0.9 0.66958790       
#> 10:          JKL        2009    1.0 1.00000000