Estimate distribution (grouped data)
Source:R/gd_estimate_distribution.R
gd_estimate_distribution.Rd
Estimate distribution (grouped data)
Arguments
- welfare
numeric: Cumulative proportion of welfare held by that proportion of the population (Lorenz Curve).
- population
numeric: Cumulative proportion of population.
- gd_type
integer: Type of data distribution If
gd_type = 1
population
must be the cumulative proportion of population andwelfare
must be the cumulative proportion of income held by that proportion of the population (Lorenz curve). Ifgd_type = 2
,population
must be the proportion of population andwelfare
must be the proportion of income. Ifgd_type = 5
, thenpopulation
must be the Percentage of the population in a given interval of incomes, whereaswelfare
must be the mean income of that interval.- mean
numeric: Data mean
- povline
numeric: Poverty line.
numeric: Share of population living below the poverty line. Optional.
Examples
welfare <- c(24.84, 35.8, 45.36, 55.1, 64.92, 77.08, 91.75, 110.64, 134.9,
167.76, 215.48, 261.66, 384.97)
population <- c(0.92, 2.47, 5.11, 7.9, 9.69, 15.24, 13.64, 16.99, 10, 9.78,
3.96, 1.81, 2.49)
gd_estimate_distribution(welfare = welfare,
population = population,
gd_type = 5,
mean = 109.9,
povline = 89)
#> $poverty_line
#> [1] 89
#>
#> $mean
#> [1] 109.9
#>
#> $median
#> [1] 94.32544
#>
#> $headcount
#> [1] 0.450615
#>
#> $poverty_gap
#> [1] 0.1247435
#>
#> $poverty_severity
#> [1] 0.04751729
#>
#> $watts
#> [1] 0.1647381
#>
#> $gini
#> [1] 0.2890132
#>
#> $mld
#> [1] 0.1376764
#>
#> $polarization
#> [1] 0.2349451
#>
#> $deciles
#> [1] 0.03911907 0.05156047 0.06195715 0.07149438 0.08094991 0.09106730
#> [7] 0.10288949 0.11849235 0.14404545 0.23842444
#>