Compute the Lorenz curve for microdata.
Arguments
- welfare
numeric: A vector of income or consumption values.
- weight
numeric: A vector of weights. Default is a vector of ones,
rep(1, length(welfare))
.- nbins
numeric: number of points on the Lorenz curve. if
NULL
the returning Lorenz curve would be the length of the original welfare vector minus the number ofNAs
of different observations inwelfare
andweight
. Default is100
forlength(welfare) > 1000
and20
otherwise.- force_nbins
logical; Force the creation of exact nbins even there is no actual data that falls in the corresponding interval. This implies that some observations will be repeated.
Examples
md_compute_lorenz(welfare = md_ABC_2010_income$welfare,
weight = md_ABC_2010_income$weight)
#> welfare lorenz_welfare lorenz_weight
#> 1 527466.5 0.0003376957 0.01012139
#> 2 770944.8 0.0012620532 0.02032103
#> 3 956874.9 0.0024979306 0.03066850
#> 4 1050884.1 0.0039694182 0.04114639
#> 5 1088278.0 0.0055054984 0.05138952
#> 6 1213282.9 0.0069577274 0.06045007
#> 7 1286504.4 0.0086596025 0.07031060
#> 8 1412181.0 0.0105074124 0.08029286
#> 9 1476508.8 0.0125630830 0.09055337
#> 10 1560126.0 0.0146654700 0.10050955
#> 11 1647038.0 0.0170353490 0.11100483
#> 12 1737304.5 0.0193014485 0.12063059
#> 13 1848083.6 0.0219092632 0.13109979
#> 14 1903261.5 0.0242845665 0.14015165
#> 15 1971652.5 0.0271715228 0.15078606
#> 16 2047943.5 0.0298738151 0.16044659
#> 17 2143238.5 0.0335044068 0.17281138
#> 18 2221881.2 0.0360345836 0.18112413
#> 19 2271607.0 0.0390183463 0.19068902
#> 20 2378096.0 0.0425773133 0.20167994
#> 21 2423298.2 0.0463684614 0.21295781
#> 22 2468756.8 0.0490135520 0.22072276
#> 23 2528214.5 0.0522747303 0.23003548
#> 24 2590368.5 0.0562543999 0.24118292
#> 25 2691228.8 0.0595428468 0.25009565
#> 26 2807437.5 0.0634174534 0.26028660
#> 27 2843264.0 0.0672974389 0.27014713
#> 28 2899196.2 0.0713083959 0.28020764
#> 29 2941314.5 0.0754888626 0.29049424
#> 30 2983189.0 0.0794214244 0.30002435
#> 31 3039593.5 0.0836239417 0.31005878
#> 32 3092553.8 0.0883756119 0.32118013
#> 33 3156643.5 0.0925633553 0.33076241
#> 34 3249655.0 0.0973062044 0.34133595
#> 35 3284760.0 0.1013468147 0.35022260
#> 36 3370602.8 0.1058835431 0.36003965
#> 37 3483609.0 0.1110439114 0.37090014
#> 38 3574020.5 0.1165914849 0.38221279
#> 39 3630684.8 0.1205340003 0.39007339
#> 40 3701176.5 0.1258161459 0.40041216
#> 41 3797451.8 0.1308362005 0.41003791
#> 42 3851052.5 0.1362041929 0.42010713
#> 43 3988344.0 0.1417637218 0.43025460
#> 44 4126599.0 0.1479052345 0.44113248
#> 45 4175654.2 0.1531242354 0.45016695
#> 46 4278784.0 0.1598269479 0.46154047
#> 47 4330308.0 0.1649856396 0.47014886
#> 48 4450651.0 0.1710469151 0.48003548
#> 49 4583402.5 0.1786654814 0.49207854
#> 50 4676065.0 0.1840867873 0.50046955
#> 51 4799488.5 0.1906791219 0.51041703
#> 52 4921696.0 0.1975220263 0.52052103
#> 53 5056518.0 0.2043279407 0.53032938
#> 54 5222615.0 0.2116179827 0.54047685
#> 55 5289737.0 0.2194971847 0.55123300
#> 56 5325424.0 0.2261619839 0.56024138
#> 57 5465240.5 0.2339040035 0.57058015
#> 58 5664699.0 0.2417327990 0.58066676
#> 59 5734393.5 0.2494474363 0.59037947
#> 60 5786693.5 0.2573803035 0.60027477
#> 61 5921869.5 0.2656260514 0.61037007
#> 62 6020719.0 0.2736847308 0.62005669
#> 63 6078579.0 0.2833664089 0.63154325
#> 64 6165239.0 0.2909918505 0.64049946
#> 65 6313356.0 0.3014843679 0.65260339
#> 66 6400624.0 0.3082930402 0.66029877
#> 67 6598847.0 0.3183028915 0.67135926
#> 68 6723124.0 0.3278916467 0.68168064
#> 69 6917179.5 0.3358297870 0.69000209
#> 70 7015360.0 0.3459946283 0.70049737
#> 71 7169986.0 0.3559772027 0.71060137
#> 72 7399422.0 0.3680075043 0.72242705
#> 73 7537658.0 0.3760000452 0.73013113
#> 74 7890955.0 0.3879857456 0.74129595
#> 75 8235175.5 0.3989193499 0.75094779
#> 76 8477008.0 0.4121598970 0.76234740
#> 77 8677887.0 0.4223627064 0.77089493
#> 78 8974374.0 0.4341605146 0.78047720
#> 79 9307018.0 0.4470115532 0.79058989
#> 80 9510035.0 0.4598769242 0.80035477
#> 81 9731732.0 0.4733182799 0.81036312
#> 82 10219490.0 0.4874193707 0.82044972
#> 83 10415763.0 0.5098227161 0.83596223
#> 84 10547598.0 0.5157629876 0.84003165
#> 85 10824170.0 0.5306387951 0.85004869
#> 86 11252204.0 0.5481878186 0.86148308
#> 87 11522499.0 0.5624545003 0.87049146
#> 88 12320558.0 0.5798950032 0.88096066
#> 89 13034536.0 0.5964953435 0.89037773
#> 90 14178849.0 0.6188846955 0.90215123
#> 91 15090150.0 0.6363639799 0.91068137
#> 92 16546611.0 0.6580029663 0.92045494
#> 93 18590828.0 0.6863040844 0.93184585
#> 94 19756928.0 0.7086763293 0.94013252
#> 95 22015660.0 0.7380363025 0.95017565
#> 96 24556662.0 0.7700535669 0.96026225
#> 97 26591538.0 0.8061904272 0.97024451
#> 98 34345624.0 0.8546482546 0.98131369
#> 99 50928228.0 0.9040598086 0.99000035
#> 100 236313152.0 1.0000000000 1.00000000