Skip to contents

MLD (Mean Logarithimic Deviation) is computed using either the beta or quadratic Lorenz functions.

Usage

pipgd_mld(
  params = NULL,
  welfare = NULL,
  weight = NULL,
  complete = getOption("pipster.return_complete"),
  lorenz = NULL
)

Arguments

params

list of parameters from pipgd_validate_lorenz()

welfare

numeric vector of cumulative share of welfare (income/consumption)

weight

numeric vector of cumulative share of the population

complete

logical: If TRUE, returns a list a cumulative returns from previously used get_gd functions. Default is FALSE

lorenz

character or NULL. Lorenz curve selected. It could be "lq" for Lorenz Quadratic or "lb" for Lorenz Beta

Value

Returns a nested list containing distribution statistics: $dist_stats$mld is a numeric vector containing the mld calculation. $dist_stats$lorenz is a numeric vector showing the lorenz curve used. If complete = TRUE, it returns a pipgd_params object with additional details and intermediate calculations.

Examples

# Example 1: Basic MLD Calculation
pipgd_mld(welfare = pip_gd$L,
          weight = pip_gd$P)
#> $dist_stats
#> $dist_stats$mld
#> [1] 0.1376809
#> 
#> $dist_stats$lorenz
#> [1] "lq"
#> 
#> 

# Example 2: MLD with a Specific Lorenz Curve
pipgd_mld(welfare = pip_gd$L,
          weight = pip_gd$P,
          lorenz = "lb")
#> $dist_stats
#> $dist_stats$mld
#> [1] 0.1405595
#> 
#> $dist_stats$lorenz
#> [1] "lb"
#> 
#> 

# Example 3: Detailed Output of MLD Calculation
pipgd_mld(welfare = pip_gd$L,
          weight = pip_gd$P,
          complete = TRUE)
#> $gd_params
#> $gd_params$lq
#> $gd_params$lq$reg_results
#> $gd_params$lq$reg_results$ymean
#> [1] 0.1219752
#> 
#> $gd_params$lq$reg_results$sst
#> [1] 0.08456216
#> 
#> $gd_params$lq$reg_results$coef
#>          A          B          C 
#>  0.8877478 -1.4514459  0.2026400 
#> 
#> $gd_params$lq$reg_results$sse
#> [1] 3.418058e-06
#> 
#> $gd_params$lq$reg_results$r2
#> [1] 0.9999596
#> 
#> $gd_params$lq$reg_results$mse
#> [1] 3.797842e-07
#> 
#> $gd_params$lq$reg_results$se
#> [1] 0.006673127 0.019034521 0.012827923
#> 
#> 
#> $gd_params$lq$key_values
#> $gd_params$lq$key_values$e
#> [1] -0.638942
#> 
#> $gd_params$lq$key_values$m
#> [1] -1.444296
#> 
#> $gd_params$lq$key_values$n
#> [1] 1.044219
#> 
#> $gd_params$lq$key_values$r
#> [1] 1.857124
#> 
#> $gd_params$lq$key_values$s1
#> [1] -0.2814192
#> 
#> $gd_params$lq$key_values$s2
#> [1] 1.004414
#> 
#> 
#> $gd_params$lq$validity
#> $gd_params$lq$validity$is_normal
#> [1] TRUE
#> 
#> $gd_params$lq$validity$is_valid
#> [1] TRUE
#> 
#> $gd_params$lq$validity$headcount
#> [1] 0.6284604
#> 
#> 
#> 
#> $gd_params$lb
#> $gd_params$lb$reg_results
#> $gd_params$lb$reg_results$ymean
#> [1] -2.496791
#> 
#> $gd_params$lb$reg_results$sst
#> [1] 10.98072
#> 
#> $gd_params$lb$reg_results$coef
#>         A         B         C 
#> 0.5613532 0.9309501 0.5800259 
#> 
#> $gd_params$lb$reg_results$sse
#> [1] 0.003204989
#> 
#> $gd_params$lb$reg_results$r2
#> [1] 0.9997081
#> 
#> $gd_params$lb$reg_results$mse
#> [1] 0.0003561098
#> 
#> $gd_params$lb$reg_results$se
#> [1] 0.014871578 0.005505620 0.006407669
#> 
#> 
#> $gd_params$lb$key_values
#> [1] NA
#> 
#> $gd_params$lb$validity
#> $gd_params$lb$validity$is_valid
#> [1] TRUE
#> 
#> $gd_params$lb$validity$is_normal
#> [1] TRUE
#> attr(,"label")
#> [1] "Normality with a mean of 1 and a poverty line of 1;1 times the mean."
#> 
#> $gd_params$lb$validity$headcount
#> [1] 0.6161877
#> 
#> 
#> 
#> 
#> $data
#> $data$welfare
#>  [1] 0.00208 0.01013 0.03122 0.07083 0.12808 0.23498 0.34887 0.51994 0.64270
#> [10] 0.79201 0.86966 0.91277 1.00000
#> attr(,"label")
#> [1] "Cumulative share of welfare"
#> 
#> $data$weight
#>  [1] 0.0092 0.0339 0.0850 0.1640 0.2609 0.4133 0.5497 0.7196 0.8196 0.9174
#> [11] 0.9570 0.9751 1.0000
#> attr(,"label")
#> [1] "Cumulative share of population"
#> 
#> 
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#> 
#> $selected_lorenz$for_pov
#> [1] "lb"
#> 
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#> 
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#> 
#> 
#> $dist_stats
#> $dist_stats$mld
#> [1] 0.1376809
#> 
#> $dist_stats$lorenz
#> [1] "lq"
#> 
#> 
#> attr(,"class")
#> [1] "pipgd_params"