Estimate poverty gap (FGT1)
pipgd_pov_gap.Rd
Estimate poverty gap (FGT1)
Arguments
- params
list of parameters from
pipgd_validate_lorenz()
- welfare
numeric vector of cumulative share of welfare (income/consumption)
- weight
numeric vector of cumulative share of the population
- mean
numeric scalar of distribution mean. Default is 1
- times_mean
numeric factor that multiplies the mean to create a relative poverty line. Default is 1
- popshare
numeric: range (0,1). Share of population. Provide share of population instead of poverty line
- povline
numeric: value of poverty line. Default is the
mean
value- format
character: either "dt" for data.table, "list" or "atomic" for a single numeric vector, whose names are corresponding selected Lorenz for each value. Default is "dt"
- lorenz
character or NULL. Lorenz curve selected. It could be "lq" for Lorenz Quadratic or "lb" for Lorenz Beta
- complete
logical: If TRUE, returns a list a cumulative returns from previously used
get_gd
functions. Default isFALSE
Value
Returns a data.table
and data.frame
object with three variables:
povline
, pov_gap
, and lorenz
. Check format
argument to change
the output format.
If complete = TRUE
, it returns a pipgd_params
object with additional
details and intermediate calculations.
Examples
# Example 1: Basic usage with specified mean and poverty line
pipgd_pov_gap(welfare = pip_gd$L,
weight = pip_gd$P,
mean = 109.90,
povline = 89,
complete = FALSE)
#> povline pov_gap lorenz
#> <num> <num> <char>
#> 1: 89 0.1273534 lb
# Example 2: Multiple poverty lines, returning data.table
pipgd_pov_gap(welfare = pip_gd$L,
weight = pip_gd$P,
povline = c(0.5, 1, 2, 3),
complete = FALSE)
#> povline pov_gap lorenz
#> <num> <num> <char>
#> 1: 0.5 0.02500299 lb
#> 2: 1.0 0.20523323 lb
#> 3: 2.0 0.52208004 lb
#> 4: 3.0 0.67289468 lb
# Example 3: Multiple poverty lines, returning list format
pipgd_pov_gap(welfare = pip_gd$L,
weight = pip_gd$P,
povline = c(0.5, 1, 2, 3),
format = "list")
#> $pl0.5
#> $pl0.5$pov_stats
#> $pl0.5$pov_stats$pov_gap
#> [1] 0.02500299
#>
#> $pl0.5$pov_stats$lorenz
#> [1] "lb"
#>
#>
#>
#> $pl1
#> $pl1$pov_stats
#> $pl1$pov_stats$pov_gap
#> [1] 0.2052332
#>
#> $pl1$pov_stats$lorenz
#> [1] "lb"
#>
#>
#>
#> $pl2
#> $pl2$pov_stats
#> $pl2$pov_stats$pov_gap
#> [1] 0.52208
#>
#> $pl2$pov_stats$lorenz
#> [1] "lb"
#>
#>
#>
#> $pl3
#> $pl3$pov_stats
#> $pl3$pov_stats$pov_gap
#> [1] 0.6728947
#>
#> $pl3$pov_stats$lorenz
#> [1] "lb"
#>
#>
#>
# Example 4: Multiple poverty lines, returning detailed list format
pipgd_pov_gap(welfare = pip_gd$L,
weight = pip_gd$P,
povline = c(0.5, 1, 2, 3),
format = "list",
complete = TRUE)
#> $pl0.5
#> $gd_params
#> $gd_params$lq
#> $gd_params$lq$reg_results
#> $gd_params$lq$reg_results$ymean
#> [1] 0.1219752
#>
#> $gd_params$lq$reg_results$sst
#> [1] 0.08456216
#>
#> $gd_params$lq$reg_results$coef
#> A B C
#> 0.8877478 -1.4514459 0.2026400
#>
#> $gd_params$lq$reg_results$sse
#> [1] 3.418058e-06
#>
#> $gd_params$lq$reg_results$r2
#> [1] 0.9999596
#>
#> $gd_params$lq$reg_results$mse
#> [1] 3.797842e-07
#>
#> $gd_params$lq$reg_results$se
#> [1] 0.006673127 0.019034521 0.012827923
#>
#>
#> $gd_params$lq$key_values
#> $gd_params$lq$key_values$e
#> [1] -0.638942
#>
#> $gd_params$lq$key_values$m
#> [1] -1.444296
#>
#> $gd_params$lq$key_values$n
#> [1] 1.044219
#>
#> $gd_params$lq$key_values$r
#> [1] 1.857124
#>
#> $gd_params$lq$key_values$s1
#> [1] -0.2814192
#>
#> $gd_params$lq$key_values$s2
#> [1] 1.004414
#>
#>
#> $gd_params$lq$validity
#> $gd_params$lq$validity$is_normal
#> [1] TRUE
#>
#> $gd_params$lq$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lq$validity$headcount
#> [1] 0.1354142
#>
#>
#>
#> $gd_params$lb
#> $gd_params$lb$reg_results
#> $gd_params$lb$reg_results$ymean
#> [1] -2.496791
#>
#> $gd_params$lb$reg_results$sst
#> [1] 10.98072
#>
#> $gd_params$lb$reg_results$coef
#> A B C
#> 0.5613532 0.9309501 0.5800259
#>
#> $gd_params$lb$reg_results$sse
#> [1] 0.003204989
#>
#> $gd_params$lb$reg_results$r2
#> [1] 0.9997081
#>
#> $gd_params$lb$reg_results$mse
#> [1] 0.0003561098
#>
#> $gd_params$lb$reg_results$se
#> [1] 0.014871578 0.005505620 0.006407669
#>
#>
#> $gd_params$lb$key_values
#> [1] NA
#>
#> $gd_params$lb$validity
#> $gd_params$lb$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lb$validity$is_normal
#> [1] TRUE
#> attr(,"label")
#> [1] "Normality with a mean of 1 and a poverty line of 0.5;0.5 times the mean."
#>
#> $gd_params$lb$validity$headcount
#> [1] 0.13313
#>
#>
#>
#>
#> $data
#> $data$welfare
#> [1] 0.00208 0.01013 0.03122 0.07083 0.12808 0.23498 0.34887 0.51994 0.64270
#> [10] 0.79201 0.86966 0.91277 1.00000
#> attr(,"label")
#> [1] "Cumulative share of welfare"
#>
#> $data$weight
#> [1] 0.0092 0.0339 0.0850 0.1640 0.2609 0.4133 0.5497 0.7196 0.8196 0.9174
#> [11] 0.9570 0.9751 1.0000
#> attr(,"label")
#> [1] "Cumulative share of population"
#>
#>
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
#> $pov_stats
#> $pov_stats$headcount
#> [1] 0.13313
#>
#> $pov_stats$lorenz
#> [1] "lb"
#>
#> $pov_stats$pov_gap
#> [1] 0.02500299
#>
#>
#> attr(,"class")
#> [1] "pipgd_params"
#>
#> $pl1
#> $gd_params
#> $gd_params$lq
#> $gd_params$lq$reg_results
#> $gd_params$lq$reg_results$ymean
#> [1] 0.1219752
#>
#> $gd_params$lq$reg_results$sst
#> [1] 0.08456216
#>
#> $gd_params$lq$reg_results$coef
#> A B C
#> 0.8877478 -1.4514459 0.2026400
#>
#> $gd_params$lq$reg_results$sse
#> [1] 3.418058e-06
#>
#> $gd_params$lq$reg_results$r2
#> [1] 0.9999596
#>
#> $gd_params$lq$reg_results$mse
#> [1] 3.797842e-07
#>
#> $gd_params$lq$reg_results$se
#> [1] 0.006673127 0.019034521 0.012827923
#>
#>
#> $gd_params$lq$key_values
#> $gd_params$lq$key_values$e
#> [1] -0.638942
#>
#> $gd_params$lq$key_values$m
#> [1] -1.444296
#>
#> $gd_params$lq$key_values$n
#> [1] 1.044219
#>
#> $gd_params$lq$key_values$r
#> [1] 1.857124
#>
#> $gd_params$lq$key_values$s1
#> [1] -0.2814192
#>
#> $gd_params$lq$key_values$s2
#> [1] 1.004414
#>
#>
#> $gd_params$lq$validity
#> $gd_params$lq$validity$is_normal
#> [1] TRUE
#>
#> $gd_params$lq$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lq$validity$headcount
#> [1] 0.6284604
#>
#>
#>
#> $gd_params$lb
#> $gd_params$lb$reg_results
#> $gd_params$lb$reg_results$ymean
#> [1] -2.496791
#>
#> $gd_params$lb$reg_results$sst
#> [1] 10.98072
#>
#> $gd_params$lb$reg_results$coef
#> A B C
#> 0.5613532 0.9309501 0.5800259
#>
#> $gd_params$lb$reg_results$sse
#> [1] 0.003204989
#>
#> $gd_params$lb$reg_results$r2
#> [1] 0.9997081
#>
#> $gd_params$lb$reg_results$mse
#> [1] 0.0003561098
#>
#> $gd_params$lb$reg_results$se
#> [1] 0.014871578 0.005505620 0.006407669
#>
#>
#> $gd_params$lb$key_values
#> [1] NA
#>
#> $gd_params$lb$validity
#> $gd_params$lb$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lb$validity$is_normal
#> [1] TRUE
#> attr(,"label")
#> [1] "Normality with a mean of 1 and a poverty line of 1;1 times the mean."
#>
#> $gd_params$lb$validity$headcount
#> [1] 0.6161877
#>
#>
#>
#>
#> $data
#> $data$welfare
#> [1] 0.00208 0.01013 0.03122 0.07083 0.12808 0.23498 0.34887 0.51994 0.64270
#> [10] 0.79201 0.86966 0.91277 1.00000
#> attr(,"label")
#> [1] "Cumulative share of welfare"
#>
#> $data$weight
#> [1] 0.0092 0.0339 0.0850 0.1640 0.2609 0.4133 0.5497 0.7196 0.8196 0.9174
#> [11] 0.9570 0.9751 1.0000
#> attr(,"label")
#> [1] "Cumulative share of population"
#>
#>
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
#> $pov_stats
#> $pov_stats$headcount
#> [1] 0.6161877
#>
#> $pov_stats$lorenz
#> [1] "lb"
#>
#> $pov_stats$pov_gap
#> [1] 0.2052332
#>
#>
#> attr(,"class")
#> [1] "pipgd_params"
#>
#> $pl2
#> $gd_params
#> $gd_params$lq
#> $gd_params$lq$reg_results
#> $gd_params$lq$reg_results$ymean
#> [1] 0.1219752
#>
#> $gd_params$lq$reg_results$sst
#> [1] 0.08456216
#>
#> $gd_params$lq$reg_results$coef
#> A B C
#> 0.8877478 -1.4514459 0.2026400
#>
#> $gd_params$lq$reg_results$sse
#> [1] 3.418058e-06
#>
#> $gd_params$lq$reg_results$r2
#> [1] 0.9999596
#>
#> $gd_params$lq$reg_results$mse
#> [1] 3.797842e-07
#>
#> $gd_params$lq$reg_results$se
#> [1] 0.006673127 0.019034521 0.012827923
#>
#>
#> $gd_params$lq$key_values
#> $gd_params$lq$key_values$e
#> [1] -0.638942
#>
#> $gd_params$lq$key_values$m
#> [1] -1.444296
#>
#> $gd_params$lq$key_values$n
#> [1] 1.044219
#>
#> $gd_params$lq$key_values$r
#> [1] 1.857124
#>
#> $gd_params$lq$key_values$s1
#> [1] -0.2814192
#>
#> $gd_params$lq$key_values$s2
#> [1] 1.004414
#>
#>
#> $gd_params$lq$validity
#> $gd_params$lq$validity$is_normal
#> [1] TRUE
#>
#> $gd_params$lq$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lq$validity$headcount
#> [1] 0.9430035
#>
#>
#>
#> $gd_params$lb
#> $gd_params$lb$reg_results
#> $gd_params$lb$reg_results$ymean
#> [1] -2.496791
#>
#> $gd_params$lb$reg_results$sst
#> [1] 10.98072
#>
#> $gd_params$lb$reg_results$coef
#> A B C
#> 0.5613532 0.9309501 0.5800259
#>
#> $gd_params$lb$reg_results$sse
#> [1] 0.003204989
#>
#> $gd_params$lb$reg_results$r2
#> [1] 0.9997081
#>
#> $gd_params$lb$reg_results$mse
#> [1] 0.0003561098
#>
#> $gd_params$lb$reg_results$se
#> [1] 0.014871578 0.005505620 0.006407669
#>
#>
#> $gd_params$lb$key_values
#> [1] NA
#>
#> $gd_params$lb$validity
#> $gd_params$lb$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lb$validity$is_normal
#> [1] TRUE
#> attr(,"label")
#> [1] "Normality with a mean of 1 and a poverty line of 2;2 times the mean."
#>
#> $gd_params$lb$validity$headcount
#> [1] 0.9500443
#>
#>
#>
#>
#> $data
#> $data$welfare
#> [1] 0.00208 0.01013 0.03122 0.07083 0.12808 0.23498 0.34887 0.51994 0.64270
#> [10] 0.79201 0.86966 0.91277 1.00000
#> attr(,"label")
#> [1] "Cumulative share of welfare"
#>
#> $data$weight
#> [1] 0.0092 0.0339 0.0850 0.1640 0.2609 0.4133 0.5497 0.7196 0.8196 0.9174
#> [11] 0.9570 0.9751 1.0000
#> attr(,"label")
#> [1] "Cumulative share of population"
#>
#>
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
#> $pov_stats
#> $pov_stats$headcount
#> [1] 0.9500443
#>
#> $pov_stats$lorenz
#> [1] "lb"
#>
#> $pov_stats$pov_gap
#> [1] 0.52208
#>
#>
#> attr(,"class")
#> [1] "pipgd_params"
#>
#> $pl3
#> $gd_params
#> $gd_params$lq
#> $gd_params$lq$reg_results
#> $gd_params$lq$reg_results$ymean
#> [1] 0.1219752
#>
#> $gd_params$lq$reg_results$sst
#> [1] 0.08456216
#>
#> $gd_params$lq$reg_results$coef
#> A B C
#> 0.8877478 -1.4514459 0.2026400
#>
#> $gd_params$lq$reg_results$sse
#> [1] 3.418058e-06
#>
#> $gd_params$lq$reg_results$r2
#> [1] 0.9999596
#>
#> $gd_params$lq$reg_results$mse
#> [1] 3.797842e-07
#>
#> $gd_params$lq$reg_results$se
#> [1] 0.006673127 0.019034521 0.012827923
#>
#>
#> $gd_params$lq$key_values
#> $gd_params$lq$key_values$e
#> [1] -0.638942
#>
#> $gd_params$lq$key_values$m
#> [1] -1.444296
#>
#> $gd_params$lq$key_values$n
#> [1] 1.044219
#>
#> $gd_params$lq$key_values$r
#> [1] 1.857124
#>
#> $gd_params$lq$key_values$s1
#> [1] -0.2814192
#>
#> $gd_params$lq$key_values$s2
#> [1] 1.004414
#>
#>
#> $gd_params$lq$validity
#> $gd_params$lq$validity$is_normal
#> [1] TRUE
#>
#> $gd_params$lq$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lq$validity$headcount
#> [1] 0.9830843
#>
#>
#>
#> $gd_params$lb
#> $gd_params$lb$reg_results
#> $gd_params$lb$reg_results$ymean
#> [1] -2.496791
#>
#> $gd_params$lb$reg_results$sst
#> [1] 10.98072
#>
#> $gd_params$lb$reg_results$coef
#> A B C
#> 0.5613532 0.9309501 0.5800259
#>
#> $gd_params$lb$reg_results$sse
#> [1] 0.003204989
#>
#> $gd_params$lb$reg_results$r2
#> [1] 0.9997081
#>
#> $gd_params$lb$reg_results$mse
#> [1] 0.0003561098
#>
#> $gd_params$lb$reg_results$se
#> [1] 0.014871578 0.005505620 0.006407669
#>
#>
#> $gd_params$lb$key_values
#> [1] NA
#>
#> $gd_params$lb$validity
#> $gd_params$lb$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lb$validity$is_normal
#> [1] TRUE
#> attr(,"label")
#> [1] "Normality with a mean of 1 and a poverty line of 3;3 times the mean."
#>
#> $gd_params$lb$validity$headcount
#> [1] 0.9876954
#>
#>
#>
#>
#> $data
#> $data$welfare
#> [1] 0.00208 0.01013 0.03122 0.07083 0.12808 0.23498 0.34887 0.51994 0.64270
#> [10] 0.79201 0.86966 0.91277 1.00000
#> attr(,"label")
#> [1] "Cumulative share of welfare"
#>
#> $data$weight
#> [1] 0.0092 0.0339 0.0850 0.1640 0.2609 0.4133 0.5497 0.7196 0.8196 0.9174
#> [11] 0.9570 0.9751 1.0000
#> attr(,"label")
#> [1] "Cumulative share of population"
#>
#>
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
#> $pov_stats
#> $pov_stats$headcount
#> [1] 0.9876954
#>
#> $pov_stats$lorenz
#> [1] "lb"
#>
#> $pov_stats$pov_gap
#> [1] 0.6728947
#>
#>
#> attr(,"class")
#> [1] "pipgd_params"
#>
# Example 5: Multiple poverty lines, returning atomic format
pipgd_pov_gap(welfare = pip_gd$L,
weight = pip_gd$P,
povline = c(0.5, 1, 2, 3),
format = "atomic",
complete = FALSE)
#> lb lb lb lb
#> 0.02500299 0.20523323 0.52208004 0.67289468
#> attr(,"povline")
#> [1] 0.5 1.0 2.0 3.0