Get selected Lorenz curve for distributional stats
pipgd_select_lorenz.Rd
Get selected Lorenz curve for distributional stats
Arguments
- params
list of parameters from
pipgd_validate_lorenz()
- welfare
numeric vector of cumulative share of welfare (income/consumption)
- weight
numeric vector of cumulative share of the population
- mean
numeric scalar of distribution mean. Default is 1
- times_mean
numeric factor that multiplies the mean to create a relative poverty line. Default is 1
- popshare
numeric: range (0,1). Share of population. Provide share of population instead of poverty line
- povline
numeric: value of poverty line. Default is the
mean
value- complete
logical: If TRUE, returns a list a cumulative returns from previously used
get_gd
functions. Default isFALSE
Examples
# Example 1: Directly using welfare and weight vectors.
pipgd_select_lorenz(welfare = pip_gd$L,
weight = pip_gd$P)
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
# Example 2: Specifying mean and poverty line.
custom_mean <- sum(pip_gd$W * pip_gd$X) / sum(pip_gd$W)
pipgd_select_lorenz(welfare = pip_gd$L,
weight = pip_gd$P,
mean = custom_mean,
povline = 1.25)
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lq"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] TRUE
#>
#>
# Example 3.1: Using parameters from pipgd_validate_lorenz()
validated_parameters <- pipgd_validate_lorenz(welfare = pip_gd$L,
weight = pip_gd$P,
complete = TRUE)
pipgd_select_lorenz(params = validated_parameters)
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
# Example 3.2: Piping from from pipgd_params |> pipgd_validate_lorenz()
pipgd_params(welfare = pip_gd$L,
weight = pip_gd$P) |>
pipgd_validate_lorenz(complete = TRUE)|>
pipgd_select_lorenz()
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
# Example 4: Detailed output with complete = TRUE
pipgd_select_lorenz(welfare = pip_gd$L,
weight = pip_gd$P,
complete = TRUE)
#> $gd_params
#> $gd_params$lq
#> $gd_params$lq$reg_results
#> $gd_params$lq$reg_results$ymean
#> [1] 0.1219752
#>
#> $gd_params$lq$reg_results$sst
#> [1] 0.08456216
#>
#> $gd_params$lq$reg_results$coef
#> A B C
#> 0.8877478 -1.4514459 0.2026400
#>
#> $gd_params$lq$reg_results$sse
#> [1] 3.418058e-06
#>
#> $gd_params$lq$reg_results$r2
#> [1] 0.9999596
#>
#> $gd_params$lq$reg_results$mse
#> [1] 3.797842e-07
#>
#> $gd_params$lq$reg_results$se
#> [1] 0.006673127 0.019034521 0.012827923
#>
#>
#> $gd_params$lq$key_values
#> $gd_params$lq$key_values$e
#> [1] -0.638942
#>
#> $gd_params$lq$key_values$m
#> [1] -1.444296
#>
#> $gd_params$lq$key_values$n
#> [1] 1.044219
#>
#> $gd_params$lq$key_values$r
#> [1] 1.857124
#>
#> $gd_params$lq$key_values$s1
#> [1] -0.2814192
#>
#> $gd_params$lq$key_values$s2
#> [1] 1.004414
#>
#>
#> $gd_params$lq$validity
#> $gd_params$lq$validity$is_normal
#> [1] TRUE
#>
#> $gd_params$lq$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lq$validity$headcount
#> [1] 0.6284604
#>
#>
#>
#> $gd_params$lb
#> $gd_params$lb$reg_results
#> $gd_params$lb$reg_results$ymean
#> [1] -2.496791
#>
#> $gd_params$lb$reg_results$sst
#> [1] 10.98072
#>
#> $gd_params$lb$reg_results$coef
#> A B C
#> 0.5613532 0.9309501 0.5800259
#>
#> $gd_params$lb$reg_results$sse
#> [1] 0.003204989
#>
#> $gd_params$lb$reg_results$r2
#> [1] 0.9997081
#>
#> $gd_params$lb$reg_results$mse
#> [1] 0.0003561098
#>
#> $gd_params$lb$reg_results$se
#> [1] 0.014871578 0.005505620 0.006407669
#>
#>
#> $gd_params$lb$key_values
#> [1] NA
#>
#> $gd_params$lb$validity
#> $gd_params$lb$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lb$validity$is_normal
#> [1] TRUE
#> attr(,"label")
#> [1] "Normality with a mean of 1 and a poverty line of 1;1 times the mean."
#>
#> $gd_params$lb$validity$headcount
#> [1] 0.6161877
#>
#>
#>
#>
#> $data
#> $data$welfare
#> [1] 0.00208 0.01013 0.03122 0.07083 0.12808 0.23498 0.34887 0.51994 0.64270
#> [10] 0.79201 0.86966 0.91277 1.00000
#> attr(,"label")
#> [1] "Cumulative share of welfare"
#>
#> $data$weight
#> [1] 0.0092 0.0339 0.0850 0.1640 0.2609 0.4133 0.5497 0.7196 0.8196 0.9174
#> [11] 0.9570 0.9751 1.0000
#> attr(,"label")
#> [1] "Cumulative share of population"
#>
#>
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
#> attr(,"class")
#> [1] "pipgd_params"