Estimate Watts poverty index
pipgd_watts.Rd
Computes Watts Index from either beta or quadratic Lorenz fit. The first distribution-sensitive poverty measure was proposed in 1968 by Watts. It is defined as the mean across the population of the proportionate poverty gaps, as measured by the log of the ratio of the poverty line to income, where the mean is formed over the whole population, counting the nonpoor as having a zero poverty gap.
Arguments
- params
list of parameters from
pipgd_validate_lorenz()
- welfare
numeric vector of cumulative share of welfare (income/consumption)
- weight
numeric vector of cumulative share of the population
- mean
numeric scalar of distribution mean. Default is 1
- times_mean
numeric factor that multiplies the mean to create a relative poverty line. Default is 1
- popshare
numeric: range (0,1). Share of population. Provide share of population instead of poverty line
- povline
numeric: value of poverty line. Default is the
mean
value- format
character: either "dt" for data.table, "list" or "atomic" for a single numeric vector, whose names are corresponding selected Lorenz for each value. Default is "dt"
- lorenz
character or NULL. Lorenz curve selected. It could be "lq" for Lorenz Quadratic or "lb" for Lorenz Beta
- complete
logical: If TRUE, returns a list a cumulative returns from previously used
get_gd
functions. Default isFALSE
Value
Returns a data.table
and data.frame
object with two variables:
watts
and lorenz
. Check format
argument to change
the output format.
If complete = TRUE
, it returns a pipgd_params
object with additional
details and intermediate calculations.
Examples
# Example 1: Basic usage with the pip_gd dataset and default poverty line
pipgd_watts(welfare = pip_gd$L,
weight = pip_gd$P)
#> povline watts lorenz
#> <num> <num> <char>
#> 1: 1 0.2775801 lb
# Example 2: Specifying a different poverty line and output as a list
pipgd_watts(welfare = pip_gd$L,
weight = pip_gd$P,
povline = 1.9,
format = "list")
#> $pl1.9
#> $pl1.9$pov_stats
#> $pl1.9$pov_stats$watts
#> [1] 0.7973243
#>
#> $pl1.9$pov_stats$lorenz
#> [1] "lb"
#>
#>
#>
# Example 3: Detailed output with complete = TRUE
pipgd_watts(welfare = pip_gd$L,
weight = pip_gd$P,
format = "list",
complete = TRUE)
#> $pl1
#> $gd_params
#> $gd_params$lq
#> $gd_params$lq$reg_results
#> $gd_params$lq$reg_results$ymean
#> [1] 0.1219752
#>
#> $gd_params$lq$reg_results$sst
#> [1] 0.08456216
#>
#> $gd_params$lq$reg_results$coef
#> A B C
#> 0.8877478 -1.4514459 0.2026400
#>
#> $gd_params$lq$reg_results$sse
#> [1] 3.418058e-06
#>
#> $gd_params$lq$reg_results$r2
#> [1] 0.9999596
#>
#> $gd_params$lq$reg_results$mse
#> [1] 3.797842e-07
#>
#> $gd_params$lq$reg_results$se
#> [1] 0.006673127 0.019034521 0.012827923
#>
#>
#> $gd_params$lq$key_values
#> $gd_params$lq$key_values$e
#> [1] -0.638942
#>
#> $gd_params$lq$key_values$m
#> [1] -1.444296
#>
#> $gd_params$lq$key_values$n
#> [1] 1.044219
#>
#> $gd_params$lq$key_values$r
#> [1] 1.857124
#>
#> $gd_params$lq$key_values$s1
#> [1] -0.2814192
#>
#> $gd_params$lq$key_values$s2
#> [1] 1.004414
#>
#>
#> $gd_params$lq$validity
#> $gd_params$lq$validity$is_normal
#> [1] TRUE
#>
#> $gd_params$lq$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lq$validity$headcount
#> [1] 0.6284604
#>
#>
#>
#> $gd_params$lb
#> $gd_params$lb$reg_results
#> $gd_params$lb$reg_results$ymean
#> [1] -2.496791
#>
#> $gd_params$lb$reg_results$sst
#> [1] 10.98072
#>
#> $gd_params$lb$reg_results$coef
#> A B C
#> 0.5613532 0.9309501 0.5800259
#>
#> $gd_params$lb$reg_results$sse
#> [1] 0.003204989
#>
#> $gd_params$lb$reg_results$r2
#> [1] 0.9997081
#>
#> $gd_params$lb$reg_results$mse
#> [1] 0.0003561098
#>
#> $gd_params$lb$reg_results$se
#> [1] 0.014871578 0.005505620 0.006407669
#>
#>
#> $gd_params$lb$key_values
#> [1] NA
#>
#> $gd_params$lb$validity
#> $gd_params$lb$validity$is_valid
#> [1] TRUE
#>
#> $gd_params$lb$validity$is_normal
#> [1] TRUE
#> attr(,"label")
#> [1] "Normality with a mean of 1 and a poverty line of 1;1 times the mean."
#>
#> $gd_params$lb$validity$headcount
#> [1] 0.6161877
#>
#>
#>
#>
#> $data
#> $data$welfare
#> [1] 0.00208 0.01013 0.03122 0.07083 0.12808 0.23498 0.34887 0.51994 0.64270
#> [10] 0.79201 0.86966 0.91277 1.00000
#> attr(,"label")
#> [1] "Cumulative share of welfare"
#>
#> $data$weight
#> [1] 0.0092 0.0339 0.0850 0.1640 0.2609 0.4133 0.5497 0.7196 0.8196 0.9174
#> [11] 0.9570 0.9751 1.0000
#> attr(,"label")
#> [1] "Cumulative share of population"
#>
#>
#> $selected_lorenz
#> $selected_lorenz$for_dist
#> [1] "lq"
#>
#> $selected_lorenz$for_pov
#> [1] "lb"
#>
#> $selected_lorenz$use_lq_for_dist
#> [1] TRUE
#>
#> $selected_lorenz$use_lq_for_pov
#> [1] FALSE
#>
#>
#> $pov_stats
#> $pov_stats$headcount
#> [1] 0.6161877
#>
#> $pov_stats$lorenz
#> [1] "lb"
#>
#> $pov_stats$watts
#> [1] 0.2775801
#>
#>
#> attr(,"class")
#> [1] "pipgd_params"
#>
# Example 4: Custom mean and times_mean with data.table format
pipgd_watts(welfare = pip_gd$L,
weight = pip_gd$P,
mean = 109.9,
times_mean = 1.5)
#> povline watts lorenz
#> <num> <num> <char>
#> 1: 164.85 0.5828177 lb