Get quantile at specified shared of population - micro data
pipmd_quantile.Rd
pipmd_quantile
returns the quantile (i.e., monetary value) that corresponds
to share of the population that lives below that threshold.
Arguments
- welfare
welfare vector
- weight
population weight vector
- n
numeric: number of equi-spaced quantiles
- popshare
numeric atomic vector: the quantiles to return. Will only be used if
n = NULL
- format
character: "dt", "list", "atomic", giving the format of the output
Value
Returns a data.table
and data.frame
object with two variables:
quantile
and value
. Check format
argument to change the output format.
Details
This is basically the inverse of estimating the poverty rate (headcount or
population share) below the poverty line. In this case, you provide the
headcount and pipmd_quantile
returns the "poverty line".
The quantiles are calculated as function of the mean of the distribution
times an x
factor. Basically, the quantile is x
times the mean. By
default, the mean is equal to 1, which implies that, if no mean value if
provided, the return value is equal to x
.
Examples
# Example 1: Calculating quintiles.
pipmd_quantile(welfare = pip_md_s$welfare,
weight = pip_md_s$weight,
n = 5,
format = "list")
#> $`20%`
#> [1] 1.266062
#>
#> $`40%`
#> [1] 1.945387
#>
#> $`60%`
#> [1] 2.986672
#>
#> $`80%`
#> [1] 4.836562
#>
#> $`100%`
#> [1] 18.01952
#>
# Example 2: Calculating deciles with data.table format.
pipmd_quantile(welfare = pip_md_s$welfare,
weight = pip_md_s$weight,
n = 10,
format = "dt")
#> quantile values
#> <char> <num>
#> 1: q_10% 0.8454755
#> 2: q_20% 1.2660622
#> 3: q_30% 1.6202722
#> 4: q_40% 1.9453871
#> 5: q_50% 2.3513837
#> 6: q_60% 2.9866717
#> 7: q_70% 3.6777302
#> 8: q_80% 4.8365623
#> 9: q_90% 7.3149182
#> 10: q_100% 18.0195166
# Example 3: Calculating quantiles at specific population shares and format atomic.
specific_popshares <- seq(from = 0, to = 1, length.out = 100)
pipmd_quantile(welfare = pip_md_s$welfare,
weight = pip_md_s$weight,
popshare = specific_popshares,
format = "atomic")
#> 10% 20% 30% 40% 50% 60% 70%
#> 0.8454755 1.2660622 1.6202722 1.9453871 2.3513837 2.9866717 3.6777302
#> 80% 90% 100%
#> 4.8365623 7.3149182 18.0195166