Welfare share by quantile in micro data
pipmd_welfare_share_at.Rd
pipmd_welfare_share_at
returns the share of welfare held by the specified
share of the population in the parameter popshare
. Alternatively, you can
select the number of quantiles (10 be default), to estimate the corresponding
share of welfare in each.
Arguments
- welfare
welfare vector
- weight
population weight vector
- n
numeric: number of equi-spaced quantiles
- popshare
numeric atomic vector: the quantiles to return. Will only be used if
n = NULL
- format
character: "dt", "list", "atomic", giving the format of the output
Value
Returns a data.table
and data.frame
object with two variables:
quantile
and share_at
. Check format
argument to change the output format.
Examples
# Example 1: Basic usage with default quantiles (10)
pipmd_welfare_share_at(welfare = pip_md_s$welfare,
weight = pip_md_s$weight)
#> quantile share_at
#> <char> <num>
#> 1: q_10% 0.1088235
#> 2: q_20% 0.2070236
#> 3: q_30% 0.2993178
#> 4: q_40% 0.4131093
#> 5: q_50% 0.4988916
#> 6: q_60% 0.6124656
#> 7: q_70% 0.7001452
#> 8: q_80% 0.8032207
#> 9: q_90% 0.9117696
#> 10: q_100% 1.0000000
# Example 2: Specifying a different number of quantiles
pipmd_welfare_share_at(welfare = pip_md_s$welfare,
weight = pip_md_s$weight,
n = 5, # For quintiles
format = "list")
#> $`20%`
#> [1] 0.2070236
#>
#> $`40%`
#> [1] 0.4131093
#>
#> $`60%`
#> [1] 0.6124656
#>
#> $`80%`
#> [1] 0.8032207
#>
#> $`100%`
#> [1] 1
#>
# Example 3: Using specific population shares
specific_popshares <- seq(from = 0.1, to = 1, by = 0.1) # Deciles
pipmd_welfare_share_at(welfare = pip_md_s$welfare,
weight = pip_md_s$weight,
popshare = specific_popshares,
format = "dt")
#> quantile share_at
#> <char> <num>
#> 1: q_10% 0.1088235
#> 2: q_20% 0.2070236
#> 3: q_30% 0.2993178
#> 4: q_40% 0.4131093
#> 5: q_50% 0.4988916
#> 6: q_60% 0.6124656
#> 7: q_70% 0.7001452
#> 8: q_80% 0.8032207
#> 9: q_90% 0.9117696
#> 10: q_100% 1.0000000
# Example 4: Returning atomic format
pipmd_welfare_share_at(welfare = pip_md_s$welfare,
weight = pip_md_s$weight,
n = 4, # For quartiles
format = "atomic")
#> 25% 50% 75% 100%
#> 0.2641149 0.4988916 0.7536647 1.0000000